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Philosophy of SIM Modeling

• Participate in Design by Defining Frequency Domain Spectrum
Requirements

– Model Built to Contain Physically Identifiable Parameters That May Be
Traced To Requirements On Critical Features

– Determine Dominant Modes/DOF and Fundamental Transmission Paths
to Optical System

– Perform Parametric Sensitivity Analysis on Dominate Modes

– Define Requirements to Decouple Dynamics in Frequency Domain and
Guarantee Performance

– Levy Design Spectrum Requirements on Critical Points
• Optics Mounts

• Component Mounts

• Gross Structure

• Control Design

• Disturbance Sources

– Transition to Test Verified Component Models As Available

– End Result Is Confidence In Design
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Preliminary Frequency Domain Mapping
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Evolution of Fidelity
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• Testbed Modeling Delivers

– Modeling Methodology Based on Case Study

– Indicates Where Design Needs Fidelity

– Instrument Component Baseline Specs

– Design Shall Not Be Restricted to Be MPI-Like
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Role of Small Angle Performance Model

• Linear Performance Model

– Assessment Of Control (Not Knowledge) Instrument Requirements and
Performance Prediction For Observing Operating Mode (Assuming Star Is
Acquired and Instrument Is Tracking)

• End-to-End Optical Pathlength Performance Analysis From Disturbance to
Fringe Visibility For Guide and Science Baselines

• End-to-End Pointing Performance Analysis From Disturbance to Wavefront
Tilt For Guide and Science Baselines

– Assessment Of Sub-Component Requirements/Performance/Architecture

– Control Algorithm Development Testbed (Spacecraft and Instrument)

– Frequency & Time Domain Analysis

• Relationship With Non-linear SIM Simulator

– Astrometric Performance Simulation

– Linear Model Has Been Integrated With DARTS Flexible Multi-Body Software

– Nonlinear Simulation Will Be Used To Evaluate The Design Requirements Built
Into Linear Performance Model On Acquisition and Imaging Modes
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State of the SIM Model

• FEM

– Siderostat & Metrology Boom Modeled As Beams

– Optics Boom Modeled As Rigid Body

– Mass and Stiffness Added For All ODL’s &  FSM’s

– Mass and Stiffness Added For All Siderostat Bay Mounts

– 8 Delay Lines - 4 Active, 4 Passive6 Axis Passive Isolation

– 1200 DOF

– 334 Modes

• Optics Model

– 3 Baseline Linear Optical Model

• Prescription Includes: 7 Siderostats, 7 Beam Compressors, 7 FSM,
4 Beam Combiners, 4 Active Delay Lines, 4 Passive Delay Lines

– Siderostat Pair Forming Baseline Is Selectable

– Ray Traces Calculated For All Baselines Simultaneously
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State of the SIM Model
• Integrated Model

– Linear FEM & Optics Model Integrated in State Space Form

– Inputs

• RWA Forces & Torques

• Delay Lines - > VC & PZT For All Baselines

• FSM X & Y Tilts In Actuator Coordinates For All Baselines

– Outputs

• OPD Starlight & Internal Metrology For All Baselines

• Wavefront Tilt in X & Y Detector Coords For All Baselines

• Attitude & Rate

• Control Model
– Linear Compensators Designed By Shaping Loop Gain

– Represented In State Space Form

– Optics and ACS Loops Closed
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SIM 3 BaseLine Integrated Model
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3 Baseline Integrated Model (Sid. Bay View)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
SIM Optical Model Ray Trace: Side View of Siderostat Bay



01.21.98Bob Grogan

Simulink Block Diagram
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Disturbance Analysis
• Hubble Space Telescope Harmonic Disturbance RWA Model

– Model Force/Torque Induced Vibration as Blocked Force

– Assume Spin Motor Disturbance (Ripple and Cogging) Small

– Stochastic Broadband Model

– Discrete-Frequency RWA Model

• Sweep over wheel speeds (0 to 3000 RPM)

• OPD vs. RPM

– Each Point Represents Standard Deviation of the Discrete Frequency PSD of OPD Resulting
From the Disturbance of a Single RWA at a Given Speed
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• RWA High Frequency Signature Is Unique

– Bearing Geometry, Bearing Race, Cage Speed, Operating Temp, Lubrication, Life

– Model Flexibility Rolloffs With Parameterized Filters

– Housing Flexibility, Bearing Impedance (100 Hz)

– Statistically Bound Problem Using Many RWA Models
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Stochastic Broadband HST RWA Model

• Radial Force Disturbance PSD Assuming Uniform Random
Variable Wheel Speed Over [0,3000] RPM
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RWA Disturbance to OPD Transfer Function
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RWA Disturbance Induced OPD Variation
(Hardmounted RWA, Active Optics Loops Open)
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RWA Disturbance Induced OPD Variation
(2 Hz Isolation, Active Optics Loops Open)
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RWA Disturbance Induced OPD Variation
(2 Hz Isolation, Optics Loops Closed)
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ACS Sensor Noise & RWA Disturbance
Induced Wave Front Tilt


